Research@Mines - by Subject
Water Research

South Dakota Mines Creates New Center for Sustainable Solutions

Sadie Tornberg, who is completing her masters in atmospheric and environmental sciences at South Dakota Mines, spent part of her summer in the backcountry of Montana and Idaho studying water quality on the Kootenai River. Research like this is one example of many that fall under the new Center for Sustainable Solutions at Mines.

South Dakota Mines has created a new multidisciplinary Center for Sustainable Solutions. The center will be a hub for research and development around sustainability including water quality, emerging contaminants, agriculture, infrastructure, carbon capture, biofuels, bioplastics, environmental stewardship and more.

“As society faces increasingly complex problems, providing sustainable solutions requires integrative partnerships and approaches that build convergence of many disciplines with research and support for stakeholders at all levels,” says Lisa Kunza, Ph.D., an associate professor in the Department of Chemistry, Biology and Health Sciences and the director of the new center at Mines.

In the last five years leading up to establishing the Center for Sustainable Solutions, there have been nearly 50 faculty and researchers from eight departments on campus participating in the efforts. “As an institution of higher education, it is imperative to have many graduate and undergraduate students trained in the collaborative environment that the Center for Sustainable Solutions provides while tying the innovative efforts to support the needs of the people,” says Kunza.

The center will help serve the needs of a wide range of partners, from assisting the Department of Defense (DoD) in mitigating emerging ...

Last Edited 8/29/2023 08:57:58 PM [Comments (0)]

Mines Joins Research Collaboration to Develop Spray-On Bioplastics for Use in Farming

Tanvi Govil, a doctoral student at Mines, helped discover a microbe that eats corn stalks and produces environmentally friendly bioplastic without costly pre-treatments. This patent-pending breakthrough technology, developed at Mines’ CNAM-Bio Center, is a key component in the BioWRAP project.

South Dakota Mines researchers are part of a new $6 million grant from the National Science Foundation (NSF) to develop bioplastics for use in agriculture over the next four years.

The project, called Bioplastics with Regenerative Agricultural Properties, or BioWRAP, includes a research team at Mines working alongside a principal investigator at Kansas State University and researchers at the University of Nebraska-Lincoln.

Traditional specialty crop production, like organic agriculture, often use petroleum-based plastic sheets to cover the ground. Conventional plastics leave microplastic residues which contaminate the environment and increase stormwater runoff. This project aims to reduce the use of plastics, herbicides, fertilizers and associated environmental impacts in agricultural production by creating an all-in-one bioplastic system that can better manage weeds, add nutrients to soils, improve soil and plant health, and save water.

“This is exciting research to see unfold on campus as it can have a major benefit for farmers in South Dakota and across the nation. Kudos to Mines researchers for seeking solutions that are both cost saving for our ag producers and health...

Last Edited 9/13/2023 06:15:49 PM [Comments (0)]

South Dakota Mines Constructs Living Laboratory on Campus

Mines civil and environmental engineering graduate student unrolls hay on one of the test plots.

South Dakota Mines is home to a new living laboratory that is located on a hill above the main campus. This long-term study will help students and the community understand how vegetation and ground cover impacts soil erosion, water quality, ecosystems and our shared natural resources.

The study area is a steep exposure of the Belle Fourche Shale rock formation that had been a problem area for erosion and contained little-to-no vegetation. The living laboratory includes over 20 small plots in a grid that have different erosion control treatments, ranging from engineered products to low-tech solutions such as hay cover or mulch. Each treatment option was designed and built by undergraduate student researchers with the assistance of faculty and instructors. The study is funded by the West Dakota Water Development District (WDWDD). The elected board is one of seven water development districts in the state, organized for the purpose of promoting conservation, development and management of resources.

Each year, students in the Department of Civil and Environmental Engineering will collect data on the treatments laid out in the living laboratory. Over the coming years, the data collected by students will h...

Last Edited 9/12/2023 09:36:57 PM [Comments (0)]

South Dakota Mines receives $1.3 Million Grant for New Scanning Electron Microscope to Benefit Research and Industry

South Dakota Mines is installing a new Scanning Electron Microscope in the university’s Engineering and Mining Experiment Station.

South Dakota Mines is installing a new Scanning Electron Microscope (SEM) in the university’s Engineering and Mining Experiment Station (EMES) thanks to a $1.3 million grant from the National Science Foundation. The new microscope is just one of many state-of-the-art scientific instruments inside the recently expanded EMES which serves high-tech industry alongside university researchers across the state.

The powerful SEM microscope is a centerpiece of the EMES. It allows researchers to perform high resolution imaging, chemical analysis and sample manipulation for various materials at scales ranging down to 100,000 times smaller than the width of a human hair. The new microscope is a critical resource for a wide variety of research across multiple disciplines.

“The SEM is the most heavily used research instrument on campus,” says Grant Crawford, Ph.D., the director of the Arbegast Materials Processing and Joining Laboratory at Mines and an associate professor in the Department of Materials and Metallurgical Engineering.

The new SEM is equipped with a focused ion beam that dramatically expands its capability over the old system. The ion beam allows researchers to extract samples for separate analysis and cr...

Last Edited 1/19/2021 04:07:49 PM [Comments (0)]

South Dakota Mines EMES Facility Expands to Include Array of Instruments with Environmental Applications

Dr. Scott Beeler uses a gas chromatograph-mass spectrometer (GC-MS) in the Engineering and Mining Experiment Station (EMES) at South Dakota Mines. The GC-MS is used to identify and quantify organic compounds with applications in a wide range of fields such as environmental monitoring, medicine, and oil and gas.

The Engineering and Mining Experiment Station (EMES) at South Dakota Mines has begun overseeing the operation and maintenance of instrumentation within the Shimadzu Environmental Research Laboratory (SERL).

The EMES was founded on the Mines campus in 1903 with a mission to serve mining industry research. Today the mission has expanded to include a much broader range of academic and industry needs with a wide array of scientific equipment that is utilized by industry professionals and university researchers across the region. The EMES has seen equipment investments by the South Dakota Board of Regents and the National Science Foundation totaling more than $2.8 million since 2011. The EMES website lists the range of scientific equipment available for academic research and industry use including the Shimadzu instrumentation.

The SERL was established in 2015 in partnership with Shimadzu Scientific Instruments by Lisa Kunza. Ph.D., associate professor in the Department of Chemistry Biology and Health Sciences at Mines. The SERL is a multidisciplinary research facility that contains a suite of state-of-the-art instrumentation with a focus on environmental applications. SERL instruments enable the chemical characterization of a wide range of sample types including natural waters, biological materials, roc...

Last Edited 9/28/2023 08:49:11 PM [Comments (0)]

South Dakota Mines Students Help Create a Living Laboratory at Eco Prayer Park

The Trinity Eco Prayer Park in downtown Rapid City is going through some renovations to create a living laboratory for hands-on learning and research.

The West Dakota Water Development District and a group of Rapid City area businesses are funding upgrades recommended by a team of South Dakota Mines students at the Trinity Eco Prayer Park in downtown Rapid City. The upgrades will increase the water flow capacity and provide easier maintenance at the park. This will help maintain the original intent of the park, which is to slow, spread, infiltrate, and naturally filter the stormwater that runs off part of downtown before it enters Rapid Creek. Most importantly, the project also creates opportunity for a living laboratory where future students can study urban runoff, associated water quality issues, and sustainable stormwater management practices. 

Urban runoff is a major contributor to pollution in waterways around the world. In general, precipitation falls onto a rooftop, runs across a parking lot and into a curb and gutter where it drops into a storm sewer making its way to a local water body. During this process the water never comes into contact with soil, which is our natural filter. Hence, the runoff is untreated. To deal with this problem, many cities have installed natural treatment systems, known as green infrastructure or low impact development practices. This allows runoff that is shed by city streets, parking lots and sidewalks t...

Last Edited 12/8/2020 03:22:08 PM [Comments (0)]

Mines Researchers Explore Hydraulic Fracturing to Expand Geothermal Energy

Liangping Li, Ph.D., (left) and Bill Roggenthen, Ph.D., (right) shown here in the EGS Collab at the 4850 level of the Sanford Underground Research Facility.

The use of hydraulic fracturing (or fracking as it’s commonly called in the press) has been a topic of contention in the oil and gas industry. However, researchers believe fracking can also be used at depth in hard rocks that contain no oil or gas to improve geothermal energy production. The process could enhance the use of the earth’s own heat as a source of clean energy.

Liangping Li, Ph.D., an assistant professor in the Department of Geology and Geological Engineering at the South Dakota School of Mines & Technology, has received an award from National Science Foundation (NSF) for his research entitled “Inverse Methods of Hydraulic Fracturing for Enhanced Geothermal Systems in a Deep Mine.” Li is working alongside projects already underway at the Sanford Research Facility (SURF) including kISMET (permeability (k) and Induced Seismicity Management for Energy Technologies) and the Enhanced Geothermal Systems (EGS) project. Hydraulic fracturing research at SURF uses no chemicals, so unlike some fossil fuel fracking operations, the fracking fluid used in these ...

Last Edited 7/12/2022 08:50:31 PM [Comments (0)]

Powerful Bugs: Harnessing the Electric Eels of the Microbial World

“We’re studying the electric eels of the microbial world,” says Navanietha Krishnaraj, Ph.D., a research scientist in the Chemical and Biological Engineering department at SD Mines. - Photo Credit NOAA

Researchers at the South Dakota School of Mines & Technology are studying ways to harness electricity generated by a unique set of microbes. 

 

“We’re studying the electric eels of the microbial world,” says Navanietha Krishnaraj, Ph.D., a research scientist in the Chemical and Biological Engineering department at SD Mines.

 

Researchers, such as Venkata Gadhamshetty, Ph.D., an associate professor in the Civil and Environmental Engineering department at SD Mines, and his team including Namita Shrestha, Ph.D., are working on maximizing the efficiency of what’s known as bioelectrochemical systems. By understanding the right combination of microbes and materials it’s possible to harness clean energy for widespread use in various applications.

 

Possible outcomes of this research include new ways to generate electricity and treat solid waste during NASA space missions, the ability for a wastewater treatment plants to help generate electricity while turning effluent into clean water, a new way to clean saline wastewater generated in oil drilling operations, and better ways to turn food waste, like tomatoes and corn stover into e...

Last Edited 9/28/2023 08:15:07 PM [Comments (0)]

SD Mines Paleontologist Lands Fulbright Scholarship to Study Invasive Species Impact

SD Mines alumnus Broc Kokesh has received a Fulbright Scholarship to study invasive species impact in Jamaica.

South Dakota School of Mines & Technology alumnus Broc Kokesh has received a Fulbright U.S. Student Program award from the U.S. Department of State and the J. William Fulbright Foreign Scholarship Board. Kokesh graduated with a master’s degree in paleontology in May. This Fulbright award takes him to Jamaica.  

Kokesh is studying how an ecosystem responds following the introduction of an invasive species. His work compares diversity between living mollusk (clams, snails, etc.) communities and co-occurring dead shells from the Kingston Harbor. His research examines the ecological effects of invasive green mussels, which were introduced in 1998 via ballast water from shipping traffic. However, since about 2010, green mussels appear to have receded in abundance for reasons unknown. Questions remain as to how the invasion affected native fauna, and Kokesh brings a paleontological perspective by focusing on dead shell diversity. Human-introduced invasive species are a global problem and this research may lend insight to invasive species management and impact in other parts of the world. 

The Fulbright Program is the flagship international educational exchange program sponsored by the U.S. government and is designed to build lasting connections between the people of the United States and the people of other countries. The Fulbright Program is funded through an annual appropri...

Last Edited 9/30/2021 02:50:36 PM [Comments (0)]

SD Mines Researchers Trace Pollution from Historic Northern Hills Mine Tailings Hundreds of Miles Downstream

Students taking part in research on this project include Bryce Pfiefle, the lead author of this paper, who graduated from SD Mines with a master’s degree in geological engineering.

The Black Hills of South Dakota was once home to the largest underground gold mine in North America – the Homestake Mine. Following its closure in 2002, the mine was turned into the Sanford Underground Research Facility. But, newly published research shows evidence of the past mining activities can still be found hundreds of miles downstream.

The history of gold mining in the northern Black Hills dates back about 130 years. During the first to middle part of the 20th century, about 100-million tons of mine tailings went down Whitewood Creek and into the Belle Fourche, Cheyenne and Missouri rivers. Research by a group of scientists, including James Stone, Ph.D., a professor of Civil and Environmental Engineering at the South Dakota School of Mines & Technology, along with others at the USGS Dakota Water Science Center show elevated levels of arsenic and other contaminants in these historic mine tailings.  

“The concentrations in the pore waters and sediments were quite high for arsenic in some sampling sites,” says Stone. 

In the 1980s, mine tailings along Whitewood Creek, found to contain arsenic, mercury and other pollutants, became an EPA Superfund Site. That clean-up project was completed in the ...

Last Edited 10/3/2023 04:41:37 PM [Comments (0)]

The Gas Cube – Turning Remote Base Waste Into Energy

The Gas Cube is a compact reactor that can turn waste into methane gas.

Cows, as many people know, have four stomachs. Cows also generate lots of methane.  So, if your goal is to describe a machine that turns food waste and cardboard into methane gas, the bovine digestive system is an analogy that makes some sense.  

“Our reactor is some ways a two-stomach cow,” says Jorge Gonzalez-Estrella, a post-doctoral research associate in the Chemical and Biological Engineering Department at Mines.

Gonzalez-Estrella is one of the researchers working on the Gas Cube project.  The semi-trailer-sized reactor is much larger than a cow, but it’s still portable. It’s one of the projects in development at Mines aimed at turning a range of remote base waste into energy. This is all thanks to a $4.8 million grant from the United States Air Force, $1.2 million of which funds the Gas Cube.  A remote Air Force Base can produce lots of waste. The Air Force seeks to save waste handling and fuel costs at mission-based remote bases. This is a challenge that the Gas Cube is designed to overcome. 

How does it work?  Back to the cow analogy. At the Gas Cube’s input, or mouth, a shredder grinds up the solid cardboard or food waste and deposits it in chamber number one. This is sort of like a cow chewing and swallowing its food. Then in that first chamber, or stomach number one, hydrolytic microorganisms break down the mix of food waste and cardboard into sugars, and fermenting microbes then break up those su...

Last Edited 8/29/2023 09:01:18 PM [Comments (0)]

SD Mines Researchers Pioneer New Testing Method That Identifies Pathogenic Potential in South Dakota Waterways

The project included over 1000 DNA extractions from bacteria in water samples taken out of Rapid Creek and the Big Sioux River over a two-year period.

Researchers at the South Dakota School of Mines & Technology have completed a groundbreaking study on harmful bacteria found in two important South Dakota waterways. The research, undertaken by Ph.D. candidate Kelsey Murray, found genes related to harmful E. coli in parts of the Big Sioux River and Rapid Creek.  

Public health officials often test streams and rivers for fecal coliform bacteria or E. coli, as this group of bacteria can be an indicator of pollution from animal or human waste. But, not all forms of E. coli are dangerous to humans; in-fact most are harmless. This study pioneered new testing methods that more accurately assess the public health risk from fecal contaminated waters by singling out and testing for genes associated with harmful forms of E. coli, including Shiga-toxigenic E. coli (STEC). 

Murray’s research, performed under Linda DeVeaux, Ph.D., and Lisa Kunza, Ph.D., is titled “Path-STREAM: Development and Implementation of a Novel Method for Determining Potential Risk from Pathogenic Bacteria in Surface Water Environments” Path-STREAM stands for Pathogenicity Profiling: Shiga Toxins and Related E. coli Attributes identification Method.

The project included over 1000 DNA extractions from bacteria in water samples taken out of Rapid Creek and the Big Sioux River over a two-year period. The effort built a method to identify the pathogenic genes associated with STEC and other...

Last Edited 10/3/2023 04:27:00 PM [Comments (0)]

$1.5 Million NSF Grant Brings Native Students into STEM Fields at Three South Dakota Schools

South Dakota School of Mines student Bo Paulsen holds the stake, while Oglala Lakota College student Wilson King wields the sledge hammer under the supervision of OLC instructor Lyle Wilson. In the background are Mines students Lyndsey Penfield and Logan Gayton. They are part of a team of students who designed and built a greenhouse in Kyle, which was part of effort to increase local food production on the Pine Ridge Reservation.

Three schools in South Dakota are teaming up in a continued effort to encourage more Native American students to enter the fields of Science, Technology, Engineering and Math (STEM). Oglala Lakota College, South Dakota School of Mines & Technology and the South Dakota State University were each awarded $495,000 grants from the National Science Foundation to evaluate the ongoing program and move the effort forward. The project, OLC, SDSU and SD Mines Pre-Engineering Education Collaborative (OSSPEEC), includes faculty, students, scientists and engineers working to solve real-world problems on the Pine Ridge Reservation.

The collaborative includes work to help Native students at OLC enter pre-engineering programs and then finish their degrees at South Dakota School of Mines or South Dakota State. The project also provides professional development for college educators to help boost the number of Lakota students who enter pre-engineering classes.

Jason Tinant is the OSSPEEC principal investigator at Oglala Lakota College where he is also an environmental science instructor. “Engineering is the application of science for the betterment of the community,” says Tinant. “This kind of engineering education can increase tribal sovereignty over water, food and language. This project embodies the Lakota ideals of “wolakociypai,” (learning the ways of the Lakota for the community) and “tiospaye” (the making of new relations),” he adds.  

T...
Last Edited 6/8/2017 04:43:03 PM [Comments (0)]

Mines Researchers Study Kootenai River Pollutants in Montana, Other Areas

South Dakota Mines student Emily Stickney conducts research on pollutants in the Kootenai River in Montana

A recent award by the U.S. Army Corps of Engineers is funding South Dakota School of Mines & Technology research on how changes in land use increase pollutants and influence the health of the Kootenai River and Lake Koocanusa in Montana, Idaho and British Columbia.

Recent land use changes in the Kootenai River watershed include increased coal mining and alterations to agricultural practices.

Dr. Lisa Kunza of the Department of Chemistry & Applied Biological Sciences, is heading a collaborative research team that includes students, other university partners, and agency collaborators. The team has already received $160,000 and is expecting to receive up to $400,000 for its efforts over the next five years.

Selenium and nitrate loads are on the rise in the Kootenai River as it enters Lake Koocanusa. Selenium is a metal found in natural deposits and may be exposed during mining activity. In 2012 alone, selenium loads into the river exceeded 29,000 pounds, a five-fold increase since 1992. There is heightened concern about possible buildup of selenium in fish tissue. Nitrate loads have increased substantially as well and may alter the resources available for fisheries. 

Endangered Kootenai White Sturgeon and other organisms in the river and reservoir could also be affected by the pollutants.

Emily Stickney from Boise, Idaho, is among the undergraduate and graduate student researchers ...

Last Edited 1/17/2017 04:45:02 PM [Comments (0)]

Amazon Research

In the Amazon River, three distinct water types collect to create a uniquely rich breeding ground for extreme aquatic life.

Laurie Anderson Explores How Marine Clams Found Their Way Into one of the World’s Largest Rivers

The Amazon River is teeming with life, from solitary four-hundred-pound catfish to shoals of eight-pound piranha. But in the Amazon basin around Santarem, Brazil—where white water, clear water, and black water rivers pool together—it’s the ancient tiny mollusks that have captured the attention of Mines researcher Dr. Laurie Anderson.

The three distinct water types collect here to create a uniquely rich breeding ground for extreme aquatic life in one of the world’s largest rivers.

RB_imgLaurieAnderson_1216

Photo of Dr. Anderson by Mark Siddall, American Museum of Natural History

Anderson’s research interest is in a little known genus of typically saltwater Corbulidae clam from the last member of a once diverse radiation in the western Amazon. She has devoted much of her career to studying this clam and other family members in the fossil record, and her current research continues to explore its evo...

Last Edited 1/3/2017 03:43:26 PM [Comments (0)]

DeVeaux, Kunza, Murray Study E. coli in State Waters

Mines researchers have been testing toxin levels in South Dakota waterways in an effort to trace the extent and the origins.

The Big Sioux River and Rapid Creek winding through the heart of South Dakota’s two biggest cities transform into nature’s playground during the summer months, but they are far from pristine. They are among the nearly 70 percent of waterways on the state’s list of impaired bodies that do not meet water-quality standards. 

The Big Sioux has been on the list nearly two decades, but until last year no one had sampled it for genes that can make the often-harmless E. coli into a disease-causing pathogen, which sickens around 95,000 Americans annually, according to the Centers for Disease Control.

Faculty researchers Dr. Lisa Kunza, an aquatic ecologist, and Dr. Linda DeVeaux, a microbiologist and geneticist, both from the South Dakota School of Mines & Technology Department of Chemistry & Applied Biological Sciences, are searching for answers that could ultimately improve public safety. Biomedical engineering doctoral student Kelsey Murray has been assisting.

Their initial findings last spring caused alarm among Sioux Falls city and county officials. Ninety-five percent of the samples pulled from Skunk Creek and the Big Sioux, both in Sioux Falls, contained a Shiga toxin gene that can turn E. coli into a dangerous strain. Intimin, a gene that helps E. coli colonies embed themselves in the human gut and thrive, was found in 100 percent of the samples.

In comparison, the prese...

Last Edited 11/3/2016 09:04:35 PM [Comments (0)]

Research Inquiries

For inquiries related to South Dakota Mines Research, contact:

Research Affairs

South Dakota Mines
501 E. St. Joseph Street
Vanderboom Laboratory for Entrepreneurial Research (V-LAB)
Rapid City, SD  57701

(605) 394-2493